Le bus de données CAN

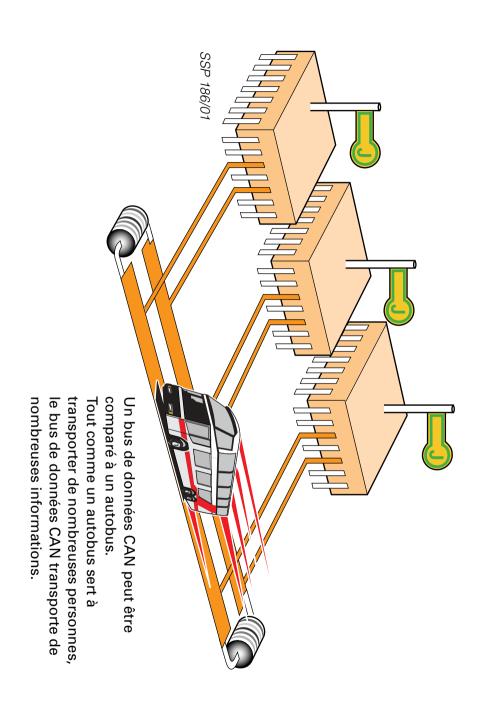
Conception et fonctionnement

Programme autodidactique

Réservé à l'usage interne.
© VOLKSWAGEN AG, Wolfsburg
Sous réserve de tous droits et modifications techniques.
740.2810.05.40Définition technique : 12/97

Ce papier a été fabriqué à partir d'une pâte blanchie

Introduction

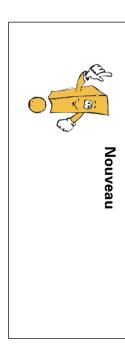

Les exigences en matière de sécurité, confort de conduite, émissions de polluants et consommation de carburant ne cessent d'augmenter. Elles se traduisent par des besoins accrus d'échange d'informations entre les appareils de commande.

Si l'on veut continuer de bien cerner le nombre des composants électriques/ électroniques et si l'on veut qu'ils ne prennent pas trop de place, il faut faire appel à une solution technique propice à l'échange des informations.

Le **bus de données CAN** de la société Bosch constitue la solution recherchée.

Il a été spécialement mis au point pour l'automobile et adopté de plus en plus pour les véhicules Volkswagen et Audi.

CAN est l'abréviation de Controller Area Network et signifie que les appareils de commande sont mis en réseau et qu'ils peuvent échanger des données.


Dans le présent programme autodidactique, nous voulons vous expliquer la conception et le fonctionnement du **bus de données CAN**.

D'un seul coup d'oeil

Page

Bus de données CAN Fonctionnement Rus de données CAN Système confort	10 10 17
Bus de données CAN Système confort	17
Bus de données CAN du groupe motopropulseur	24
Contrôle des connaissances	30

Le programme autodidactique n'est pas un Manuel de réparation! Pour les instructions de contrôle, de réglage et de réparation, veuillez vous reporter à la documentation technique du Service après-vente prévue à cet effet.

Bus de données CAN

La transmission des données

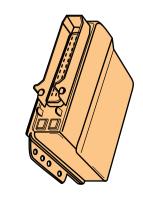
Quelles possibilités existe-t-il à l'heure actuelle pour assurer une transmission judicieuse des données dans l'automobile?

première possibilité :

chaque information est échangée via une ligne distincte.

deuxième possibilité :

l'ensemble des informations est échangé entre les appareils de commande par deux lignes au maximum, soit un réseau en bus CAN.


La figure vous montre la première possibilité où chaque information est transmise par une ligne

distincte.

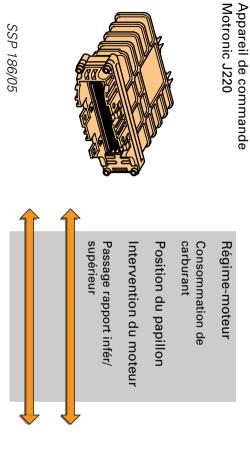
Au total, cinq lignes seront nécessaires à cet effet.

Motronic J220 Appareil de commande SSP 186/04 Passage rapport infér./ carburant Consommation de Intervention du moteur Position du papillon Régime-moteur

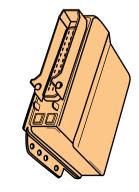
> Appareil de commande de BV automatique J217

Conclusion:

Pour chaque information, on a besoin d'une ligne.


Chaque information supplémentaire fait augmenter le nombre des lignes et donc le nombre des broches sur les appareils de commande.

C'est pourquoi ce type de transmission de données n'est judicieux que dans le cas d'un nombre limité d'informations à échanger.


Par opposition à la première possibilité, toutes les informations sont transmises par deux lignes grâce au réseau en bus CAN.

Sur les deux lignes bidirectionnelles du bus de données CAN, ce sont les mêmes données qui sont transmises.

Vous trouverez de plus amples explications à ce sujet dans la suite du présent programme autodidactique.

Appareil de commande de BV automatique J217

Conclusion:

Dans ce type de transmission de données, toutes les informations sont transmises par l'intermédiaire de deux lignes.

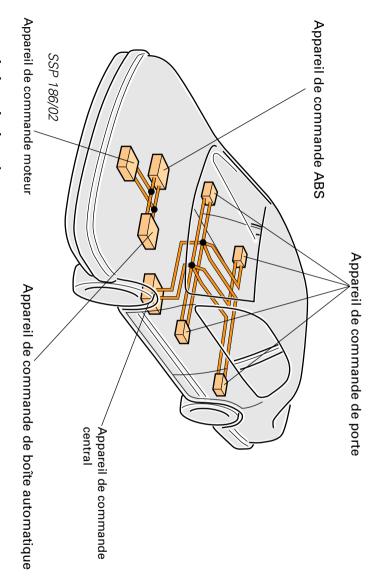
Quel que soit le nombre des appareils de commande raccordés au réseau et des informations.

La transmission des données à l'aide d'un bus de données CAN est judicieuse lorsqu'il s'agit d'échanger de nombreuses informations entre les appareils de commande.

Bus de données CAN

Le bus de donnés CAN

est un type de transfert de données entre les appareils de commande. Il relie les différents appareils de commande entre eux pour former un système global.


Plus un appareil de commande dispose d'informations sur l'état de l'ensemble du système, plus il sera en mesure d'harmoniser les différentes fonctions.

Au niveau du groupe motopropulseur, le système global se compose de :

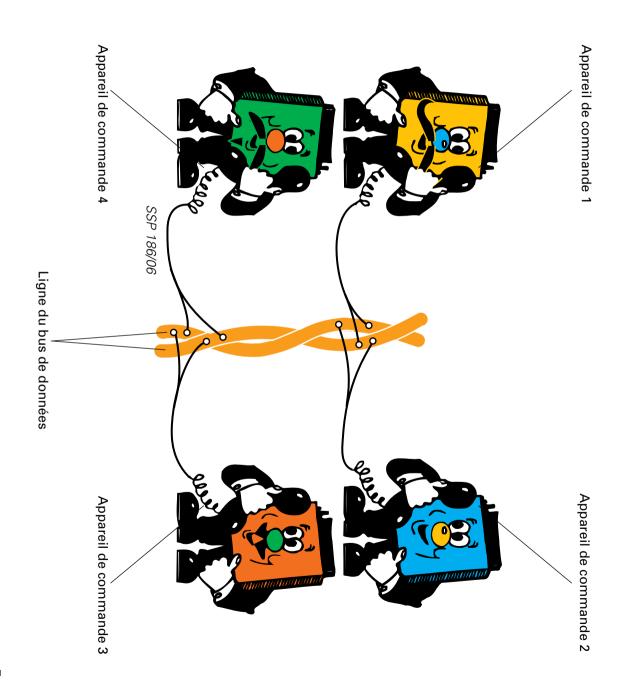
- l'appareil de commande moteur,
- l'appareil de commande de boîte automatique et
- l'appareil de commande de l'ABS

Dans le domaine du confort, le système global se compose de :

- l'appareil de commande central et
- les appareils de commande des portes

Avantages du bus de données :

- si le protocole de données doit être complété par des informations, seul des modifications de logiciel seront nécessaires.
- diminution du taux d'erreur par vérification constante des informations émises par les appareils de commande et par les sûretés complémentaires intégrées aux protocoles de données.
- diminution des capteurs et câbles de signaux par utilisation multiple d'un signal de capteur.


- un transfert ultra-rapide des données entre les appareils de commande.
- gain de place grâce à des connecteurs plus petits et à des appareils de commande de taille réduite.
- le bus de données CAN est normalisé dans le monde entier. Il permet donc à des appareils de commande de différents fabricants d'échanger entre eux leurs données.

Le principe de la transmission de données

La transmission de données via un réseau en bus CAN fonctionne un peu comme un branchement conférence au téléphone.

Un abonné (appareil de commande) « énonce » ses données dans un réseau de lignes, alors que les autres abonnés « écoutent » ces données.

Certains abonnés trouvent ces données intéressantes et les utiliseront. D'autres abonnés ne s'y intéressent pas.

Bus de données CAN

Quels sont les composants du bus de données CAN?

Il se compose d'un contrôleur, d'un émetteurrécepteur, de deux terminaisons et deux lignes de bus de données.

Mises à part les lignes de bus de données, les composants se trouvent dans les appareils de commande. Dans les appareils de commande, il n'y a eu aucun changement par rapport au fonctionnement antérieur.

Leurs fonctions sont les suivantes :

Le contrôleur CAN

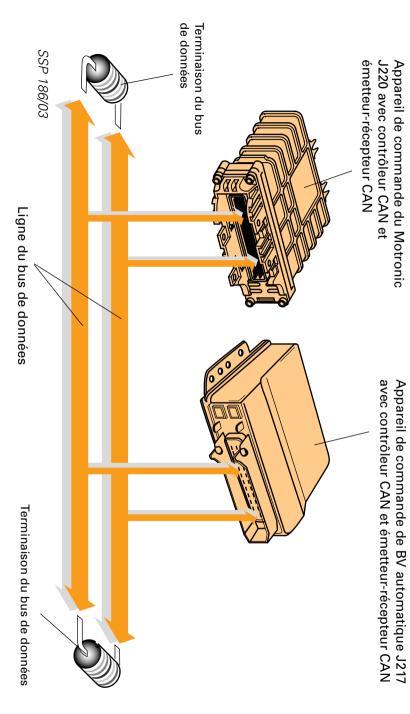
reçoit du micro-ordinateur intégré à l'appareil de commande les données à transmettre. Il les traite et les transmet à l'émetteur-récepteur CAN.

De la même manière, il recevra de l'émetteurrécepteur les données, les traitera puis les transmettra au micro-ordinateur intégré à l'appareil de commande.

L'émetteur-récepteur CAN

est à la fois un émetteur (transmitter) et un récepteur (receiver). Il convertit les données venant du contrôleur CAN en signaux électriques, puis les transmet sur les lignes du réseau en bus.

De la même manière, il reçoit les données et les convertit pour le contrôleur du bus de données CAN.


La terminaison du bus de données

est une résistance. Elle empêche que les données ne soient renvoyées par les extrêmités sous forme d'écho et que les données soient ainsi falsifiées.

Les lignes de bus de données

sont bi-directionnelles et servent au transfert des données.

Elles sont désignées par CAN-High et CANlow.

Dans un réseau en bus, aucun destinataire n'est défini. Les données sont émises sur le réseau en bus et sont reçues puis analysées en règle générale par tous les modules connectés.

Déroulement d'un transfert de données :

Fourniture des données

Les données sont fournies par l'appareil de commande au contrôleur CAN pour le transfert.

Emission des données

L'émetteur-récepteur CAN reçoit de la part du contrôleur CAN les données, les convertit en signaux électriques puis les émet.

Analyse des données


Les appareils de commande vérifient s'ils ont besoin ou pas des données pour assurer leurs fonctions.

Reprise des données

Si les données sont importantes, elles seront lues et traitées ou sinon négligées.

Réception des données

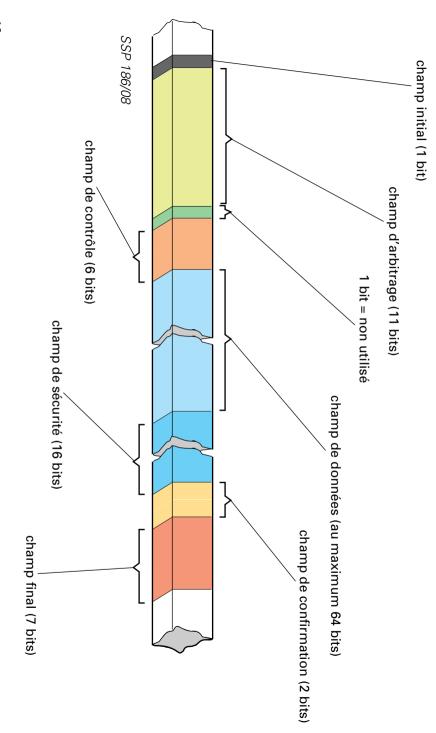
Tous les autres appareils de commande qui sont mis en réseau par bus de données CAN deviennent des récepteurs.

Transmission des données

Que transmet le bus de données CAN?

Il transmet à intervalles rapprochés un protocole de données entre les appareils de commande.

Le protocole est subdivisé en sept champs.

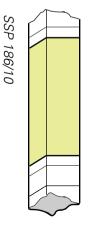

Le protocole de données :

Il se compose d'une multitude de bits juxtaposés les uns aux autres. Le nombre de bits d'un protocole de données dépend de la taille du champ de données.

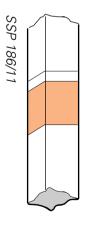
Sur le graphique, vous voyez la structure d'un protocole. Elle est identique sur les deux lignes du bus de données.
Pour simplifier les explications, on ne reproduira dans le présent Programme autodidactique toujours qu'une seule ligne du bus de données.

Un « bit » est l'unité d'information la plus petite (un état de commutation par unité de temps). En électronique, cette information ne peut avoir par principe que la valeur « 0 » ou « 1 », ou bien « oui » ou « non ».

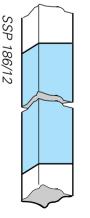
Les sept champs :


Le champ initial

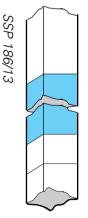
marque le début d'un protocole de données. Sur la ligne High du bus CAN, on émet un bit d'environ 5 volts (en fonction du système) et un bit d'environ 0 volt sur la ligne Low du bus CAN.


Dans le champ d'arbitrage

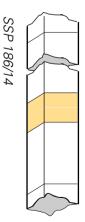
sera fixée la priorité du protocole de données. Si, par exemple, deux appareils de commande veulent émettre en même temps leur protocole, celui qui a la priorité la plus élevée aura la préférence.


Dans le champ de contrôle

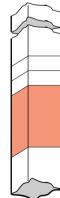
se trouve le nombre d'informations contenues dans le champ des données. Chaque récepteur peut alors vérifier s'il a bien reçu toutes les informations.


Dans le champ de données

sont transmises les informations destinées aux autres appareils de commande.


Le champ de sécurité

sert à détecter les perturbations lors du transfert.


Dans le champ de confirmation,

les récepteurs signalisent à l'émetteur qu'ils ont correctement reçu le protocole de données. Si le défaut est détecté, ils en informent immédiatement l'émetteur. L'émetteur répétera la transmission.

Le champ final

termine le protocole de données. C'est la dernière possibilité de signaler des erreurs, qui déclenchera une répétition du processus.

SSP 186/15

Fonctionnement

Comment créer un protocole de données

Chaque bit ne peut avoir que l'état « 0 » ou « 1 ». Le protocole de données se compose de plusieurs bits juxtaposés les uns aux autres.

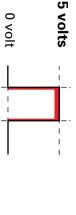

Voici un exemple simple expliquant comment un état peut être produit avec la valeur « 0 » ou «1

L'interrupteur d'éclairage

deux états de l'interrupteur d'éclairage. L'interrupteur permet d'allumer ou d'éteindre l'éclairage. C'est-à-dire que l'on est en présence de

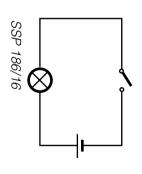
Etat de l'interrupteur d'éclairage avec valeur « 1 »

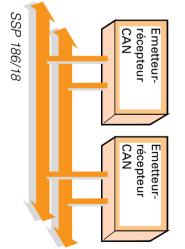
- Interrupteur fermé
- Ampoule allumée


Sur le réseau en bus CAN, le principe de fonctionnement est le même.

L'émetteur-récepteur

peut également produire deux états différents d'un bit.


Etat du bit ayant la valeur « 1 »


- L'émetteur-récepteur s'ouvre, commute au bout de 5 volts dans le système confort (au bout d'environ 2,5 volts pour le groupe motopropulseur)
- La tension sur la ligne du bus est d'environ
 5 volts pour le système confort (de 2,5 volts environ pour le groupe motopropulseur)

Etat de l'interrupteur d'éclairage avec valeur « 0 »


- Interrupteur ouvert
- Ampoule éteinte

Etat du bit ayant la valeur « 0 »

- Emetteur-récepteur fermé, commute à la masse
- Tension sur la ligne de bus de données ,
 0 volt environ

deux bits juxtaposés. Vous voyez dans le tableau suivant comment il est possible de transmettre des informations avec

En présence de deux bits, il existe quatre variantes différentes

commande A chaque variante peut être attributée une information impérative pour tous les appareils de

Explication:

tableau sera « le lève-glace est en cours de déplacement » ou « la température du liquide de si le premier bit est émis avec 0 volt et le deuxième également avec 0 volt, l'information dans le refroidissement s'élève à 10 °C ».

Variante possible	2e bit	2e bit 1er bit	Graphique	Information sur l'état du lève-glace	Information sur la température du liquide de refroidissement
un	0 volt 0 volt	0 volt	-	en déplacement	10 °C
deux	0 volt 5 volts	5 volts		au repos	20 °C
trois	5 volts 0 volt	0 volt	ļļ	dans la zone de capture	30 °C
quatre	5 volts 5 volts	5 volts		en détection blocage en haut	40 °C

supplémentaire. Le tableau ci-dessous vous montre la multiplication des informations à chaque bit

Variantes de Information	Information	Variantes de	Information	Variantes de bit	Information
bit à 1 seul bit	possible	bit à 2 bits	possible	à 3 bits	possible
0 volt	10 °C	0 volt, 0 volt	10 °C	0 volt, 0 volt, 0 volt	10 °C
5 volts	20 °C	0 volt, 5 volts	20 °C	0 volt, 0 volt, 5 volts	20 °C
		5 volts, 0 volt	30 °C	0 volt, 5 volts, 0 volt	30 °C
		5 volts, 5 volts	40 °C	0 volt, 5 volts, 5 volts	40 °C
				5 volts, 0 volt, 0 volt	50 °C
				5 volts, 0 volt, 5 volts	0°C
				5 volts, 5 volts, 0 volt	70 °C
				5 volts, 5 volts, 5 volts	3° 08

de transmettre sera important. Plus le nombre de bits juxtaposés est grand, plus le nombre des informations qu'il est possible

A chaque adjonction d'un bit, le nombre des informations possibles double

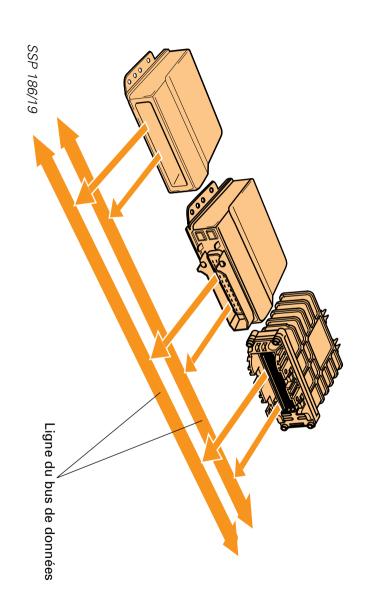
Fonctionnement

Arbitrage du bus de données CAN

cole de données?

Comment reconnaît-on la priorité d'un proto-

boîte automatique pour des raisons de confort. celui venant de l'appareil de commande de la des questions de sécurité - plus important que l'appareil de commande ABS/EDS est - pour C'est ainsi que le protocole venant de plus élevée sera émis en premier. Le protocole de données ayant la priorité la temps, il faut décider qui aura la priorité. émettre leur protocole de données en même Si plusieurs appareils de commande veulent


Comment s'effectue cet arbitrage?

d'un moindre poids. un poids. Il s'agit soit d'un plus grand poids ou Chaque bit a une valeur à laquelle est affectée

0000 0101 100	freins l	1
Champ d'arbitrage	Protocole de don- Champ d'arbitrage nées	Priorité
ge se de onze bits. de données est	code dans le champ d'arbitrage correspondant, qui se compose de onze bits. La priorité de trois protocoles de données est mentionnée ci-dessous.	code dans correspond La priorité mentionné
ées est affecté un	A chaque protocole de données est affecté un	A chaque p

bit avec	0 volt	5 volts
valeur	0	_
Poids	grand poids	moindre poids

Priorité	Protocole de don- nées	Protocole de don- Champ d'arbitrage nées
_	freins I	001 1010 0000
2	moteurl	010 1000 0000
З	boîte de vitesses l	100 0100 0000

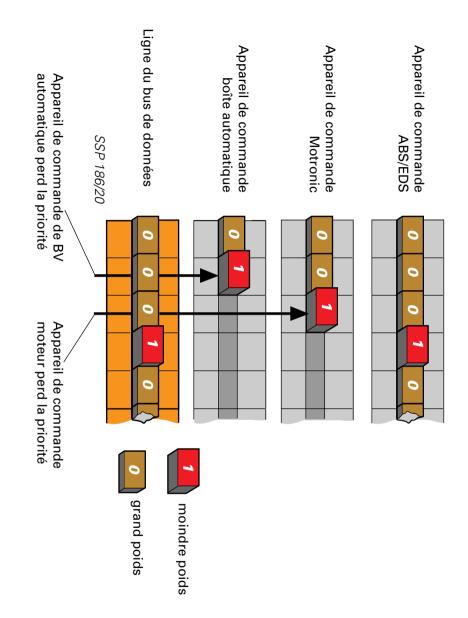
Les trois appareils de commande commencent simultanément à émettre leur protocole de données.

En même temps, ils font une comparaison bit par bit sur la ligne de bus de données. Si un appareil de commande émet un bit de moindre poids et détecte un bit de grand poids, il va interrompre la transmission et devient récepteur.

Exemple:

1er bit :

- l'appareil de commande ABS/EDS émet un bit de grand poids.
- l'appareil de commande Motronic émet également un bit de grand poids.
- l'appareil de commande de boîte automatique émet un bit de moindre poids et détecte sur la ligne de bus un bit de moindre poids. Il perd donc la priorité par arbitrage et devient récepteur.

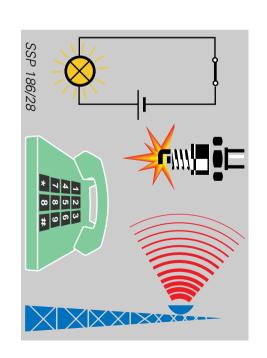

2e bit :

- l'appareil de commande ABS/EDS émet un bit de grand poids.
- l'appareil de commande Motronic émet un bit de moindre poids et détecte sur la ligne de bus un bit de grand poids. Il perd la priorité par arbitrage et devient récepteur.

3e bit :

l'appareil de commande ABS/EDS a la priorité maximale et remporte ainsi l'arbitrage. Il envoie son protocole de données jusqu'à la fin.

Une fois que l'appareil de commande ABS/EDS a émis jusqu'à la fin son protocole de données, les autres tentent de nouveau d'envoyer leur protocole de données.



Fonctionnement

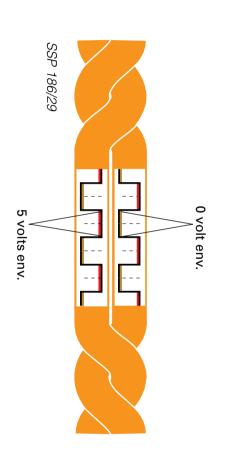
Les sources parasites

Les sources parasites dans le véhicule sont des composants dont le fonctionnement provoque des étincelles et /ou l'ouverture ou la fermeture des circuits électriques.

D'autres sources parasites sont constituées par exemple par les téléphones mobiles et les stations émettrices, c'est-à-dire tout ce qui produit des ondes électromagnétiques.
Ces ondes électromagnétiques peuvent altérer la transmission des données.

Afin de réduire les perturbations sur le transfert des données, **deux** lignes de bus sont torsadées entre elles.

Cela empêche en même temps des rayonnements perturbateurs émis par la ligne du bus.


Sur les deux lignes, la tension respective est inverse.

La somme des tensions est donc à chaque instant constante et les effets de champs électromagnétiques des deux lignes du bus de données s'annulent mutuellement.

La ligne du bus de données est protégée contre les rayonnements parasites et pratiquement neutre vers l'extérieur.

Cela signifie que :

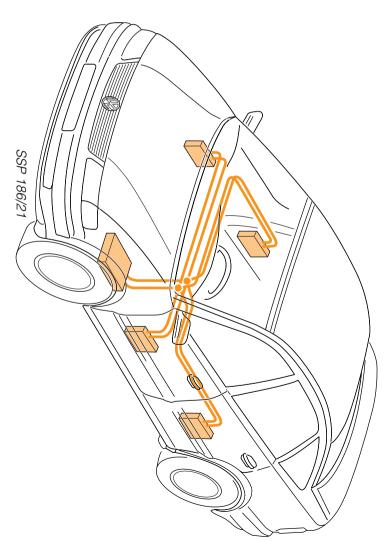
si sur une ligne du bus, on a une tension d'environ 0 volt, la tension sur l'autre ligne sera d'environ 5 volts et vice-versa.

Le bus de données CAN Système confort

Le bus de données CAN dans le système confort

Dans le domaine du confort, le réseau en bus CAN relie les appareils de commande du système confort.

il s'agit

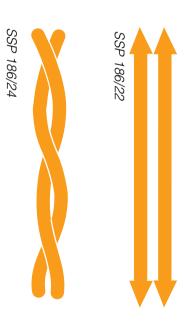

- d'un appareil de commande central et de
- deux ou quatre appareils de commande des portes.

La constitution du réseau en bus CAN dans le système confort

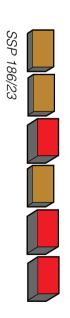
Les câbles des appareils de commande se rejoignent en étoile en un seul point.
L'avantage est qu'en cas de défaillance d'un appareil, les autres appareils de commande peuvent continuer à émettre leur protocole de données.

Les différentes fonctions du système confort transmettent des données :

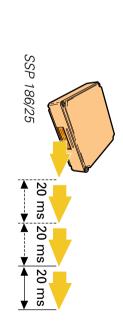
- verrouillage central
- lève-glaces électriques
- éclairage des commandes
- rétroviseurs extérieurs à réglage et dégivrage électriques
- autodiagnostic

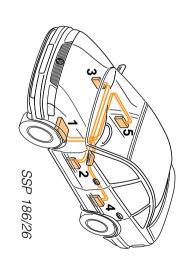

Quels sont les avantages du bus de données CAN dans le système confort ?

- niveau des connecteurs de porte.
- En cas de court-circuit à la masse, au pôle positif ou des câbles entre eux, le bus de données CAN commute en mode dégradé et en fonctionnement monofilaire.
 - Diminution du nombre nécessaire des câbles diagnostic parce que l'autodiagnostic global est effectué par le biais de l'appareil de commande central.


e bus de données CAN Système confort

Les caractéristiques du bus de données CAN dans le système confort


- Le bus de données se compose de deux lignes sur lesquelles sont transmises les informations.
- Afin d'éviter les perturbations électromagnétiques et les rayonnements perturbateurs, les deux lignes de bus sont torsadées entre elles. Il convient de respecter l'espacement entre les torsades.


Le bus de données fonctionne à une vitesse de 62,5 Kbits/s (62 500 bits par seconde). Elle se situe dans une plage de vitesses (low speed) allant de 0 à 125 kbits/s. Le transfert d'un protocole de données dure 1 milliseconde environ.

 Chaque appareil de commande tente d'émettre ses données à un intervalle de 20 millisecondes.

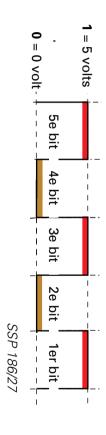
- Définition des priorités :
- appareil de commande cêté conducteur→
- 3. appareil de commande côté passager avant→
- 4. appareil de commande arrière gauche→5. appareil de commande arrière droit

Comme dans le système confort, les données peuvent être transmises à une vitesse relativement faible, l'utilisation d'un émetteur-récepteur de faible puissance est possible.

Cela présente l'avantage qu'en cas de défaillance d'une ligne du bus on puisse commuter en fonctionnement monofilaire. Le transfert des données sera poursuivi et assuré

Les informations dans le système confort

Il s'agit d'informations sur les états des différentes fonctions.


Par exemple, quelle télécommande radio a été utilisée, quel est l'état momentané du verrouillage central, y a-t-il dysfonctionnement, etc...

de commande de la porte du conducteur. Le tableau suivant vous montre à titre d'exemple une partie du champ des données de l'appareil

et des lève-glace électriques Vous voyez comment et quelles sont les informations transmises sur l'état du verrouillage central

Etat de la	Information		Séqu	Séquence des bits	s bits		Poids des
fonction		5e bit	4e bit	3e bit	5e bit 4e bit 3e bit 2e bit 1er bit	1er bit	bits
Verrouillage	état initial			0 volt,	0 volt, 0 volt, 0 volt	volt	000
central	Safe			0 volt,	0 volt, 0 volt, 5 volts	volts	001
	verrouillé			0 volt,	0 volt, 5 volts, 0 volt	0 volt	010
	porte déverrouillée			0 volt,	0 volt, 5 volts, 5 volts	5 volts	011
	porte verrouillée			5 volts	5 volts, 0 volt, 0 volt	0 volt	100
	déverouillé			5 volts	5 volts, 0 volt, 5 volts	5 volts	101
	défaut du signal capteur d'entrée			5 volts	5 volts, 5 volts, 0 volt	, 0 volt	110
	défaut concernant un état			5 volts	5 volts, 5 volts, 5 volts	5 volts	111
Lève-glace	en déplacement	0 volt, 0 volt,	0 volt,				00
électriques	au repos	0 volt, 5 volts	5 volts				01
	dans la zone de capture	5 volts, 0 volt	, 0 volt				10
	détection du blocage en haut	5 volts, 5 volts	5 volts				11

Exemple d'une séquence de bits possible

Séquenc e de bits	Valeur	Tension sur la ligne du bus	Tension sur la ligne Signification de l'information du bus
3 à 1	101	5 volts, 0 volt, 5 volts	101 5 volts, 0 volt, 5 volts le verrouillage central est déverrouillé
5 à 4	10	5 volts, 0 volt	la vitre se trouve dans une zone comprise entre la
			butée supérieure (complètement fermée) et 4 mm
			en dessous du joint de baie de vitre.

Le bus de données CAN Système confort

La mise en réseau des appareils de commande dans le système confort

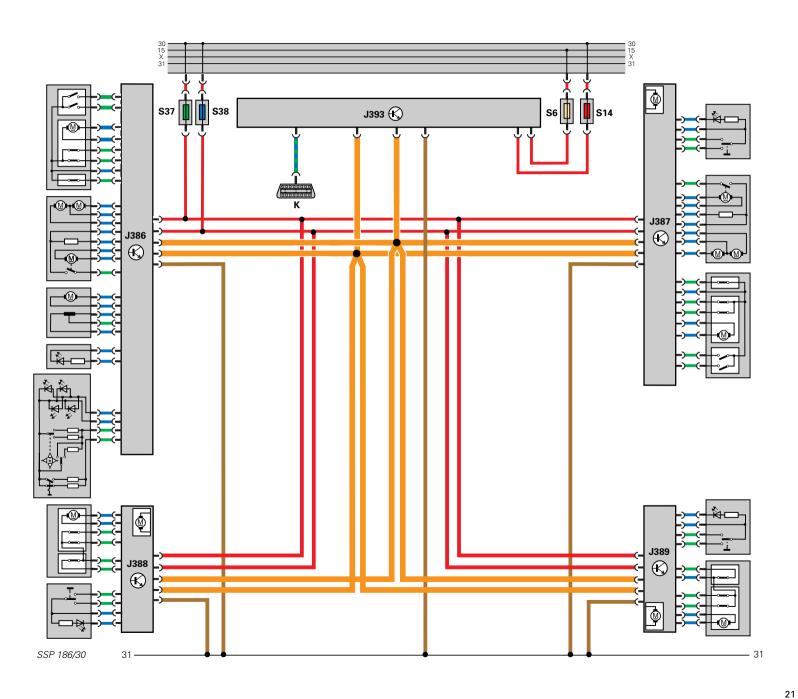
Appareils de commande :

J386	appareil de commande de porte côté
	conducteur

J 387	appareil de commande de porte côté
	passager avant

J388	appareil de commande de porte
	arrière gauche

J389	appareil de commande de porte,
	arrière droit


J393 appareil de commande central pour système confort

Fusibles

S6	fusible borne 15
	appareil de commande central
S14	fusible borne 30
	appareil de commande central
S37	fusible borne 30
	lève-glaces
S238	fusible borne 30
	verrouillage central

Codification des coloris :

20

Le bus de données CAN Système confort

L'autodiagnostic du bus de données CAN dans le système confort

L'autodiagnostic s'effectue à l'aide du V.A.G 1551/52 ou du VAS 5051 en utilisant l'adresse :

46 « Système confort »

Tous les appareils de commande qui échangent entre eux des informations via le bus de données CAN doivent être considérés comme un réseau global dans l'autodiagnostic et le dépannage.

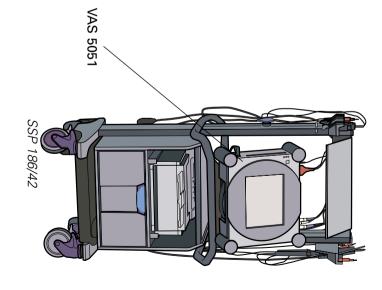
Les fonctions suivantes concernent le bus de données CAN :

Fonction 02 - Consultation de la mémoire de défauts

Deux défauts sont affichés spécialement pour le bus de données CAN dans la mémoire de défauts.

Bus de données Confort

Ce défaut est affiché lorsque la transmission des données est défaillante entre deux ou plusieurs appareils de commande.


Les causes possibles du défaut sont :

- appareils de commande défectueux
- les deux bus de données ou
- les raccords à fiche ont été interrompus.

Bus de données Confort en mode dégradé Ce défaut est affiché lorsque le bus de données CAN est passé en mode dégradé.

Origines possibles du défaut :

- une ligne du bus ou
- une connexion à fiche est interrompue.

Edition sur l'imprimante du V. A.G 1551

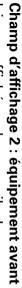
01328

BUS de données Confort

SSP 186/40

Edition sur l'imprimante du V. A.G 1551

01329 BUS de données Confort en mode dégradé

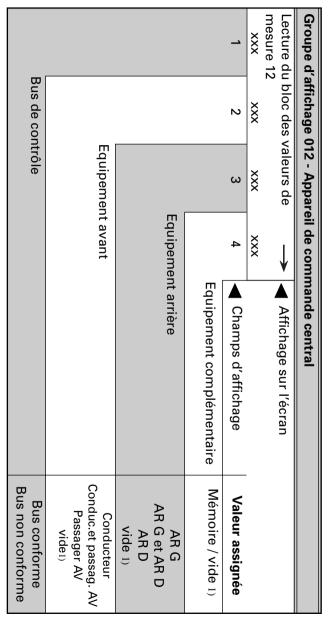

SSP 186/40

mesure Fontion 08 - Lecture du bloc des valeurs de

quatre champs d'affichage qui concernent le bus de données Appareil de commande central, on trouve Sous le numéro de groupe d'affichage 012

câblage). conforme ou défectueux (p. ex. défaut de

ont été montés à l'avant et participent à la transmission des données. lci sera affiché quels appareils de commande


Champ d'affichage 3 : équipement arrière

lci sera affiché quels appareils de commande transmission des données. ont été montés à l'arrière et participent à la

Champ d'affichage 4 : équipement complémentaire

sur le véhicule. réglage des sièges et du rétroviseur est monté lci sera affiché si un système mémoire pour le

système Memory) échangent des données entre eux. Les deux systèmes (Système confort et

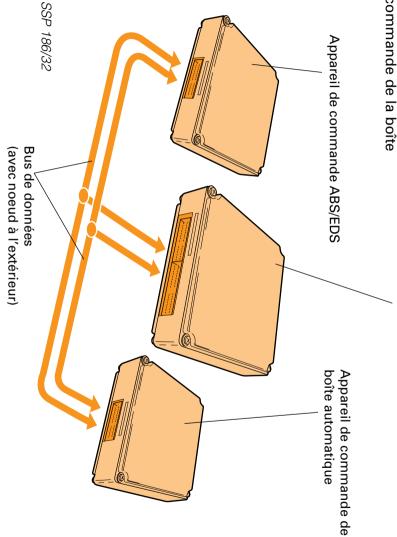
SSP 186/41

possible de vérifier une transmission actuelle dans les ateliers, il n'est pas directe des données du bus CAN. Avec les moyens existants à l'heure

Bus de données CAN du groupe motopropulseur

Le bus de données CAN du groupe motopropulseur

Le bus de données CAN relie :

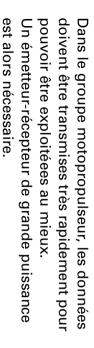

- l'appareil de commande du Motronic
- l'appareil de commande de l'ABS/EDS
- l'appareil de commande de la BV automatique.

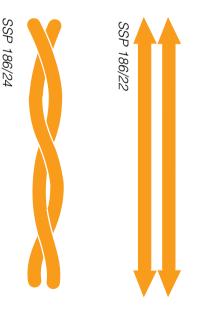
Il est transmis à l'heure actuelle dix protocoles de

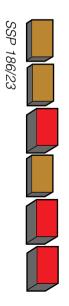
données.

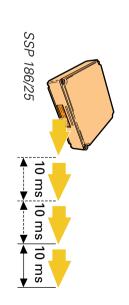
Cinq à partir de l'appareil de commande du Motronic, trois à partir de l'appareil de commande de l'ABS/EDS et deux à partir de l'appareil de commande de la boîte automatique.

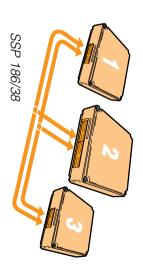
Appareil de commande Motronic




Quels sont les avantages du bus de données CAN dans le domaine du groupe motopropulseur?


Une vitesse de transmission élevée. Les appareils de commande sont très exactement informés de l'état momentané de l'ensemble du système et peuvent ainsi assurer leurs fonctions de façon optimale.


Les caractéristiques du bus de données dans le groupe motopropulseur


- Le bus de données se compose de deux lignes sur lesquelles sont transmises les informations.
- Afin d'éviter les perturbations électromagnétiques et les éléments perturbateurs, les deux lignes du bus sont torsadées entre elles. Il convient de respecter l'espacement entre les torsades.
- Le bus de données fonctionne à une vitesse de 500 kbit/s (500 000 bits par seconde).
 Cette dernière se situe donc dans une plage de vitesses (high speed) de 125 à 1000 kbit/
- Le transfert d'un protocole de données dure 0,25 milliseconde env.
- Chaque appareil de commande tente, en fonction de son type, d'émettre ses données à un intervalle allant de 7 à 20 millisecondes.
- Définition des priorités :
- 1. appareil de commande ABS/EDS→
- 2. appareil de commande Motronic→
- appareil de commande de boîte automatique

Cet émetteur-récepteur autorise la transmission des données entre deux allumages.

Cela permet d'utiliser les données reçues pour la prochaine impulsion d'allumage.

Bus de données CAN du groupe motopropulseur

Les informations concernant le groupe motopropulseur

Quelles sont les informations transmises?

Il s'agit d'informations très importantes pour les missions à accomplir par les différents appareils de commande de la boîte de vitesses automatique commande moteur ainsi que pour des raisons d'agrément de conduite dans le cas de l'appareil ABS/EDS, pour des raisons de calage de l'allumage et de la quantité injectée sur l'appareil de de commande et, ce, à plusieurs titres : pour des raisons de sécurité sur l'appareil de commande

champs de données. A titre d'exemple, le tableau suivant vous indique une partie des protocoles et des différents

Ordre de priorité	Protocoles de données en provenance de	Exemples d'informations
_	Appareil de commande ABS/ EDS	Appareil de commande ABS/ - demande de régulation du couple d'inertie du EDS - demande de régulation antinatinage (ASR)
		demande de régulation antipatinage (ASR)
2	Appareil de commande	régime moteur
	moteur, protocole de	position du papillon
	données 1	kick-down
ω	Appareil de commande mo-	température du liquide de refroidissement
	teur, protocole de données 2	vitesse véhicule
4	Appareil de commande de	changement de gamme de vitesse
	boîte automatique	BV en mode dégradé
		position du levier sélecteur

isolée. En raison du nombre des informations à transmettre, seul une partie est représentée. A titre d'exemple, vous trouvez dans le tableau ci-dessous la constitution d'une information

différentes permettant de juxtaposer les bits. La position momentanée du papillon est tranmise avec 8 bits. Il en résulte 256 versions

Ce qui permet de transmettre les positions du papillon de 0° à 102° à intervalle de 0,4°.

1111 1111 102,0° d'angle d'ouverture du papillon	1111 1111
	:
0101 0100 033,6° d'angle d'ouverture du papillon	0101 0100
• • •	:
0000 0010 000,8° d'angle d'ouverture du papillon	0000 0010
0000 0001 000,4° d'angle d'ouverture du papillon	0000 0001
0000 0000 000,0° d'angle d'ouverture du papillon	0000 0000
Succession Position du papillon des bits	Succession des bits

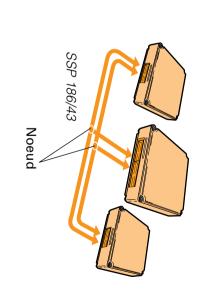
La mise en réseau des appareils de commande du groupe motopropulseur

J104 appareil de commande ABS/EDS J217 appareil de commande de BV

SSP 186/34

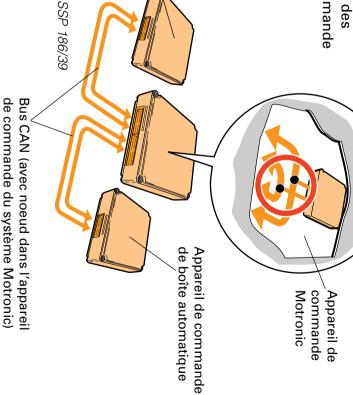
automatique

J220 appareil de commande Motronic


Contrairement à ce qui a été fait pour le système confort, on ne montre qu'une partie du système global pour le groupe motopropulseur.

Dans le cas présent, on ne montre que le type de mise en réseau des différents appareils de commande.

J217


J104

Le noeud (l'intersection) se situe en règle générale à l'extérieur des appareils de commande, intégré au faisceau de câbles.

Exceptionnellement, ce noeud peut se situer dans l'appareil de commande.

Vous voyez dans la figure ci-dessous le noeud qui marque le point de rassemblement des lignes à l'intérieur de l'appareil de commande moteur.

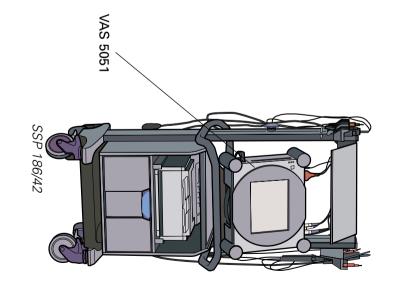
Appareil de commande ABS/EDS

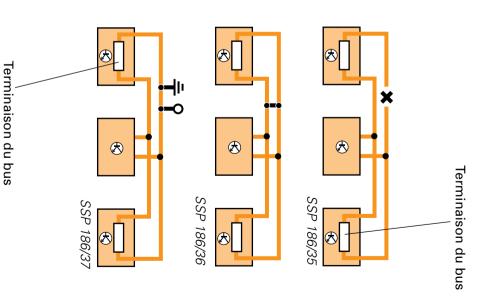
Bus de données CAN du groupe motopropulseur

L'autodiagnostic du bus de données CAN pour le groupe motopropulseur

L'autodiagnostic s'effectue à l'aide du V.A.G 1551/52 ou du VAS 5051 en utilisant les adresses suivantes :

01 pour l'électronique moteur02 pour l'électronique de la boîte de vitesses03 pour l'électronique de l'ABS


Tous les appareils de commande qui échangent entre eux des informations doivent être considérés comme un système global aux plans de l'autodiagnostic et du dépannage.


La fonction suivante concerne le bus de données CAN:

Fonction 02 - Consultation de la mémoire de défauts

Dans les appareils de commande, un défaut est mémorisé lorsque la transmission des données entre les appareils de commande a été altérée :

- sur une ou plusieurs lignes du bus il y a une rupture.
- il y a un court-circuit entre les lignes du bus.
- une ligne du bus présente un court-circuit à la masse ou au pôle positif.
- un ou plusieurs appareils de commande est ou sont défectueux.

Contrôle des connaissances

•	Sur	Sur le bus de donnees CAN
		l'ensemble des informations sont transmises par un maximum de deux lignes.
•		une ligne distincte est nécessaire pour chaque information.
••	Les	avantages du bus de données CAN sont :
L L		diminution du nombre des capteurs et des câbles de signaux par utilisation multiple d'un signal de capteur
ω		gain de place grâce à des connecteurs d'appareil de commande plus petits et des appareils de commande de dimensions réduites
		possibilité de transmission très rapide des données
O		taux d'erreur plus faible par une vérification constante des protocoles de données
	Sur	· le bus de données CAN, on peut avec trois bits transmettre jusqu′à
1		trois informations,
		six informations ou
		huit informations.
-	Le	Le bus de données CAN
		autorise l'autodiagnostic.
		n'autorise pas l'autodiagnostic.
	Que	Que doit-on prendre en compte pour l'autodiagnostic et le dépannage ?
		rien de particulier, car l'autodiagnostic et le dépannage se sont pas possibles.
		tous les appareils de commande qui échangent entre eux des données doivent être considérés comme
]	
()		chaque appareil de commande est à considérer comme une entité à part.